Hierarchical Co-Planar, Resonant Model

This example shows how you can fit a two planet model to relative astrometry data. This functionality would work equally well with RV, images, etc.

We will restrict the two planets to being exactly co-planar, and have a near 2:1 period resonance, and zero-eccentricity.

For this example, we will use astrometry from the HR8799 system collated by Jason Wang and retrieved from the website Whereistheplanet.com.

using Octofitter
using CairoMakie
using PairPlots
using Distributions
using PlanetOrbits
┌ Warning: Module Octofitter with build ID ffffffff-ffff-ffff-0000-00a6ce1adcbe is missing from the cache.
│ This may mean Octofitter [daf3887e-d01a-44a1-9d7e-98f15c5d69c9] does not support precompilation but is imported by a module that does.
└ @ Base loading.jl:1948
astrom_b = PlanetRelAstromLikelihood(
    (epoch=53200.0, object=1, ra=1471.0, σ_ra=6.0, dec=887.0, σ_dec=6.0, cor=0, ),
    (epoch=54314.0, object=1, ra=1504.0, σ_ra=3.0, dec=837.0, σ_dec=3.0, cor=0, ),
    (epoch=54398.0, object=1, ra=1500.0, σ_ra=7.0, dec=836.0, σ_dec=7.0, cor=0, ),
    (epoch=54727.0, object=1, ra=1516.0, σ_ra=4.0, dec=818.0, σ_dec=4.0, cor=0, ),
    (epoch=55042.0, object=1, ra=1526.0, σ_ra=4.0, dec=797.0, σ_dec=4.0, cor=0, ),
    (epoch=55044.0, object=1, ra=1531.0, σ_ra=7.0, dec=794.0, σ_dec=7.0, cor=0, ),
    (epoch=55136.0, object=1, ra=1524.0, σ_ra=10.0, dec=795.0, σ_dec=10.0, cor=0, ),
    (epoch=55390.0, object=1, ra=1532.0, σ_ra=5.0, dec=783.0, σ_dec=5.0, cor=0, ),
    (epoch=55499.0, object=1, ra=1535.0, σ_ra=15.0, dec=766.0, σ_dec=15.0, cor=0, ),
    (epoch=55763.0, object=1, ra=1541.0, σ_ra=5.0, dec=762.0, σ_dec=5.0, cor=0, ),
    (epoch=56130.0, object=1, ra=1545.0, σ_ra=5.0, dec=747.0, σ_dec=5.0, cor=0, ),
    (epoch=56226.0, object=1, ra=1549.0, σ_ra=4.0, dec=743.0, σ_dec=4.0, cor=0, ),
    (epoch=56581.0, object=1, ra=1545.0, σ_ra=22.0, dec=724.0, σ_dec=22.0, cor=0, ),
    (epoch=56855.0, object=1, ra=1560.0, σ_ra=13.0, dec=725.0, σ_dec=13.0, cor=0, ),
    (epoch=58798.03906, object=1, ra=1611.002, σ_ra=0.133, dec=604.893, σ_dec=0.199, cor=-0.406, ),
    (epoch=59453.245, object=1, ra=1622.924, σ_ra=0.32, dec=570.534, σ_dec=0.296, cor=-0.905, ),
    (epoch=59454.231, object=1, ra=1622.872, σ_ra=0.204, dec=571.296, σ_dec=0.446, cor=-0.79, ),
)

astrom_c = PlanetRelAstromLikelihood(
    (epoch=53200.0, object=2, ra=-739.0, σ_ra=6.0, dec=612.0, σ_dec=6.0, cor=0, ),
    (epoch=54314.0, object=2, ra=-683.0, σ_ra=4.0, dec=671.0, σ_dec=4.0, cor=0, ),
    (epoch=54398.0, object=2, ra=-678.0, σ_ra=7.0, dec=678.0, σ_dec=7.0, cor=0, ),
    (epoch=54727.0, object=2, ra=-663.0, σ_ra=3.0, dec=693.0, σ_dec=3.0, cor=0, ),
    (epoch=55042.0, object=2, ra=-639.0, σ_ra=4.0, dec=712.0, σ_dec=4.0, cor=0, ),
    (epoch=55136.0, object=2, ra=-636.0, σ_ra=9.0, dec=720.0, σ_dec=9.0, cor=0, ),
    (epoch=55390.0, object=2, ra=-619.0, σ_ra=4.0, dec=728.0, σ_dec=4.0, cor=0, ),
    (epoch=55499.0, object=2, ra=-607.0, σ_ra=12.0, dec=744.0, σ_dec=12.0, cor=0, ),
    (epoch=55763.0, object=2, ra=-595.0, σ_ra=4.0, dec=747.0, σ_dec=4.0, cor=0, ),
    (epoch=56130.0, object=2, ra=-578.0, σ_ra=5.0, dec=761.0, σ_dec=5.0, cor=0, ),
    (epoch=56226.0, object=2, ra=-572.0, σ_ra=3.0, dec=768.0, σ_dec=3.0, cor=0, ),
    (epoch=56581.0, object=2, ra=-542.0, σ_ra=22.0, dec=784.0, σ_dec=22.0, cor=0, ),
    (epoch=56855.0, object=2, ra=-540.0, σ_ra=12.0, dec=799.0, σ_dec=12.0, cor=0, ),
)

fig = Makie.scatter(astrom_b.table.ra, astrom_b.table.dec, axis=(;autolimitaspect=1))
Makie.scatter!(astrom_c.table.ra, astrom_c.table.dec)
Makie.scatter!([0], [0], marker='⋆', markersize=50, color=:black)
fig
Example block output

We now specify our two planet model for planets b & c.

@planet b Visual{KepOrbit} begin
    e = 0.0
    ω = 0.0

    # Use the system inclination and longitude of ascending node
    # variables
    i = system.i
    Ω = system.Ω

    # Specify the period as ~ 1% around 2X the P_nominal variable
    P_mul ~ Normal(1, 0.1)
    P = 2*system.P_nominal * b.P_mul

    a = cbrt(system.M * b.P^2)
    θ ~ UniformCircular()
    tp = θ_at_epoch_to_tperi(system,b,59454.231)  # reference epoch for θ. Choose an MJD date near your data.
end astrom_b
@planet c Visual{KepOrbit} begin
    e = 0.0
    ω = 0.0

    # Use the system inclination and longitude of ascending node
    # variables
    i = system.i
    Ω = system.Ω

    # Specify the period as ~ 1% the P_nominal variable
    P_mul ~ truncated(Normal(1, 0.1), lower=0)
    P = system.P_nominal * c.P_mul

    a = cbrt(system.M * c.P^2)

    θ ~ UniformCircular()
    tp = θ_at_epoch_to_tperi(system,c,59454.231)  # reference epoch for θ. Choose an MJD date near your data.
end astrom_c
@system HR8799_res_co begin
    plx ~ gaia_plx(;gaia_id=2832463659640297472)
    M ~ truncated(Normal(1.5, 0.02), lower=0)
    # We create inclination and longitude of ascending node variables at the
    # system level.
    i ~ Sine()
    Ω ~ UniformCircular()
    # We create a nominal period of planet c variable.
    P_nominal ~ Uniform(50, 300) # years
end b c


model = Octofitter.LogDensityModel(HR8799_res_co)
LogDensityModel for System HR8799_res_co of dimension 12 with fields .ℓπcallback and .∇ℓπcallback

Let's now sample from the model:

using Pigeons
results,pt = octofit_pigeons(model, n_rounds=10);
┌ Warning: Module Octofitter with build ID ffffffff-ffff-ffff-0000-00a6ce1adcbe is missing from the cache.
│ This may mean Octofitter [daf3887e-d01a-44a1-9d7e-98f15c5d69c9] does not support precompilation but is imported by a module that does.
└ @ Base loading.jl:1948
[ Info: Determining initial positions and metric using pathfinder
┌ Info: Found a sample of initial positions
└   initial_logpost_range = (-165.83084189814974, -160.6786317526877)
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
  scans     restarts      Λ        Λ_var      time(s)    allc(B)  log(Z₁/Z₀)   min(α)     mean(α)    min(αₑ)   mean(αₑ)
────────── ────────── ────────── ────────── ────────── ────────── ────────── ────────── ────────── ────────── ──────────
        2          0       2.97       1.44       7.12    3.5e+08  -1.87e+07          0      0.858      0.919      0.961
        4          0       5.16       6.84       1.33   9.46e+06  -2.17e+04          0      0.613      0.902      0.932
        8          0       4.91       8.34       2.17   1.01e+06       -505          0      0.573        0.9      0.921
       16          0       6.92       9.57       4.86   1.89e+06       -204          0      0.468      0.919      0.933
       32          0        7.8       10.3       8.25   3.61e+06       -197          0      0.415      0.917      0.931
       64          0       8.44       6.46       17.5   3.03e+08       -207          0      0.519      0.905      0.926
      128          2        8.4       7.26       32.1   4.92e+08       -208  2.77e-203      0.495      0.911      0.928
      256          3       9.15       7.16       59.2    9.3e+08       -209          0      0.474      0.907      0.927
      512          7       9.66       8.02        121    1.9e+09       -208   2.78e-19      0.429      0.914      0.927
 1.02e+03         13       9.97       8.38        236   3.73e+09       -206   1.36e-26      0.408      0.906      0.927
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────

Plots the orbits:

octoplot(model, results)
Example block output

Corner plot:

octocorner(model, results, small=true)
Example block output

Now examine the period ratio:

hist(
    results[:b_P][:] ./ results[:c_P][:],
    axis=(;
        xlabel="period ratio",
        ylabel="counts",
    )
)
Example block output