Priors

All parameters to your model must have a prior defined. You may provide any continuous, univariate distribution from the Distributions.jl. A few useful distributions include:

  • Normal
  • Uniform
  • LogNormal
  • LogUniform
  • TrucatedNormal
  • VonMises

This pacakge also defines the Sine() distribution for e.g. inclination priors and UniformCircular() for periodic variables. Internally, UniformCircular() creates two standard normal variables and finds the angle between them using arctan. This allows the sampler to smoothly cycle past the ends of the domain. You can specify a different circular domain than (0,2pi) by passing the size of the domain e.g. τ = UniformCircular(1.0).

The VonMise distribution is notable but not commonly used. It is the analog of a normal distribution defined on a circular domain (-π, +π). If you have a Gaussian prior on an angular parameter, a Von Mises distribution is probably more appropriate.

Behind the scenes, Octofitter remaps your parameters to unconstrained domains using the Bijectors.jl (and corrects the priors accordingly). This is essential for good sampling efficiency with HMC based samplers.

This means that e.g. if you define the eccentricity prior as e=Uniform(0,0.5), the sampler will actually generate values across the whole real line and transform them back into the [0,0.5] range before evaluating the orbit. It is therefore essential that your priors do not include invalid domains.

For example, setting a=Normal(3,2) will result in poor sampling efficiency as sometimes negative values for semi-major axis will be drawn (especially if you're using the parallel tempered sampler).

Instead, for parameters like semi-major axis, eccentricity, parallax, and masses, you should truncate any distributions that have negative tails. This can easily be accomplished with TrauncatedNormal or Trunacted(dist, low, high) for any arbitrary distribution.

Kernel Density Estimate Priors

Octofitter has support for sampling from smoothed kernel density estimate priors. These are non-parametric distributions fit to a 1D dataset consisting of random draws. This is one way to include the output of a different model as the prior to a new model. That said, it's usually best to try and incorporate the model directly into the code. There are a few examples on GitHub of this, including atmosphere model grids, cooling tracks, etc.

Using a KDE

First, we will generate some data. In the real world, you would load this data eg. from a CSV file.

using Octofitter, Distributions

# create a smoothed KDE estimate of the samples from a 10+-1 gaussian
kde = Octofitter.KDEDist(randn(1000).+10)
KDEDist kernel density estimate distribution

Note that in Octofitter the KDE will have its support truncated to the minimum and maximum values that occur in your dataset, ie. it doesn't allow for infinite long tails.

Now add it to your model as a prior:

@planet b Visual{KepOrbit} begin
    a ~ kde # Sample from the KDE here
    e ~ Uniform(0.0, 0.99)
    i ~ Sine()
    ω ~ UniformCircular()
    Ω ~ UniformCircular()
    θ ~ UniformCircular()
    tp = θ_at_epoch_to_tperi(system,b,50000)
end
@system Tutoria begin
    M ~ truncated(Normal(1.2, 0.1), lower=0)
    plx ~ truncated(Normal(50.0, 0.02), lower=0)
end b
model = Octofitter.LogDensityModel(Tutoria)
chain = octofit(model)
Chains MCMC chain (1000×28×1 Array{Float64, 3}):

Iterations        = 1:1:1000
Number of chains  = 1
Samples per chain = 1000
Wall duration     = 0.97 seconds
Compute duration  = 0.97 seconds
parameters        = M, plx, b_a, b_e, b_i, b_ωy, b_ωx, b_Ωy, b_Ωx, b_θy, b_θx, b_ω, b_Ω, b_θ, b_tp
internals         = n_steps, is_accept, acceptance_rate, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size, is_adapt, loglike, logpost, tree_depth, numerical_error

Summary Statistics
  parameters         mean         std       mcse    ess_bulk   ess_tail      r ⋯
      Symbol      Float64     Float64    Float64     Float64    Float64   Floa ⋯

           M       1.1993      0.1005     0.0029   1191.8838   712.4322    1.0 ⋯
         plx      50.0006      0.0202     0.0006   1071.7069   436.7351    1.0 ⋯
         b_a      10.0293      1.0246     0.0325    996.0405   618.5840    1.0 ⋯
         b_e       0.5064      0.2824     0.0081   1129.3961   414.1687    0.9 ⋯
         b_i       1.5309      0.6452     0.0192   1083.3080   738.0395    1.0 ⋯
        b_ωy      -0.0590      0.7174     0.0381    387.3104   906.1256    1.0 ⋯
        b_ωx      -0.0170      0.7152     0.0421    294.3155   443.6906    1.0 ⋯
        b_Ωy       0.0353      0.7127     0.0460    288.6507   588.2839    1.0 ⋯
        b_Ωx       0.0122      0.7053     0.0354    459.4530   768.4756    1.0 ⋯
        b_θy       0.0529      0.7186     0.0397    349.3876   806.2388    0.9 ⋯
        b_θx      -0.0208      0.7024     0.0330    488.0166   826.4583    1.0 ⋯
         b_ω      -0.0817      1.8805     0.0958    480.5521   790.9754    1.0 ⋯
         b_Ω       0.0333      1.7800     0.0800    567.1196   708.1083    1.0 ⋯
         b_θ      -0.0239      1.7691     0.0726    666.9666   708.3337    1.0 ⋯
        b_tp   45236.5702   4253.6124   144.0297    885.8951   703.6541    1.0 ⋯
                                                               2 columns omitted

Quantiles
  parameters         2.5%        25.0%        50.0%        75.0%        97.5%
      Symbol      Float64      Float64      Float64      Float64      Float64

           M       0.9989       1.1284       1.1991       1.2727       1.3906
         plx      49.9599      49.9880      50.0006      50.0141      50.0396
         b_a       8.0764       9.3236      10.0427      10.7698      12.1475
         b_e       0.0358       0.2637       0.5088       0.7556       0.9625
         b_i       0.3379       1.0453       1.5330       1.9928       2.7529
        b_ωy      -1.1146      -0.7350      -0.1227       0.6294       1.0654
        b_ωx      -1.0963      -0.7109      -0.0293       0.6881       1.0537
        b_Ωy      -1.0579      -0.6814       0.0802       0.7363       1.0611
        b_Ωx      -1.0759      -0.6896       0.0696       0.7026       1.0353
        b_θy      -1.0644      -0.6478       0.0961       0.7510       1.0739
        b_θx      -1.0581      -0.7197      -0.0445       0.6510       1.0579
         b_ω      -2.9942      -1.8206      -0.0866       1.5631       2.9986
         b_Ω      -2.9814      -1.4681       0.0984       1.5135       3.0118
         b_θ      -2.9984      -1.5140      -0.0856       1.4162       2.9978
        b_tp   37982.0214   41310.1726   45825.1263   49525.0370   50400.1569

We now examine the posterior and verify that it matches our KDE prior:

dat = chain[:b_a][:]
@show mean(dat) std(dat)
mean(dat) = 10.029276290199228
std(dat) = 1.0245746640740667

Observable Based Priors

Octofitter implements observable-based priors from O'Neil 2019 for relative astrometry. You can fit a model to astrometry using observable-based priors using the following recipe:

using Octofitter, Distributions

astrom_like = PlanetRelAstromLikelihood(
    (;epoch=mjd("2020-12-20"), ra=400.0, σ_ra=5.0, dec=400.0, σ_dec=5.0)
)

@planet b Visual{KepOrbit} begin
    # For using with ObsPriors:
    P ~ Uniform(0.001, 1000)
    a = cbrt(system.M * b.P^2)

    e ~ Uniform(0.0, 1.0)
    i ~ Sine()
    ω ~ UniformCircular()
    Ω ~ UniformCircular()
    mass ~ LogUniform(0.01, 100)

    τ ~ UniformCircular(1.0)
    tp =  b.τ*b.P*365.25 + 58849 # reference epoch for τ. Choose an MJD date near your data.
end astrom_like ObsPriorAstromONeil2019(astrom_like);

@system System1 begin
    plx ~ Normal(21.219, 0.060)
	M ~ truncated(Normal(1.1, 0.2),lower=0)
end b