Priors

All parameters to your model must have a prior defined. You may provide any continuous, univariate distribution from the Distributions.jl. A few useful distributions include:

  • Normal
  • Uniform
  • LogNormal
  • LogUniform
  • TrucatedNormal
  • VonMises

This pacakge also defines the Sine() distribution for e.g. inclination priors and UniformCircular() for periodic variables. Internally, UniformCircular() creates two standard normal variables and finds the angle between them using arctan. This allows the sampler to smoothly cycle past the ends of the domain. You can specify a different circular domain than (0,2pi) by passing the size of the domain e.g. τ = UniformCircular(1.0).

The VonMise distribution is notable but not commonly used. It is the analog of a normal distribution defined on a circular domain (-π, +π). If you have a Gaussian prior on an angular parameter, a Von Mises distribution is probably more appropriate.

Behind the scenes, Octofitter remaps your parameters to unconstrained domains using the Bijectors.jl (and corrects the priors accordingly). This is essential for good sampling efficiency with HMC based samplers.

This means that e.g. if you define the eccentricity prior as e=Uniform(0,0.5), the sampler will actually generate values across the whole real line and transform them back into the [0,0.5] range before evaluating the orbit. It is therefore essential that your priors do not include invalid domains.

For example, setting a=Normal(3,2) will result in poor sampling efficiency as sometimes negative values for semi-major axis will be drawn (especially if you're using the parallel tempered sampler).

Instead, for parameters like semi-major axis, eccentricity, parallax, and masses, you should truncate any distributions that have negative tails. This can easily be accomplished with TrauncatedNormal or Trunacted(dist, low, high) for any arbitrary distribution.

Kernel Density Estimate Priors

Octofitter has support for sampling from smoothed kernel density estimate priors. These are non-parametric distributions fit to a 1D dataset consisting of random draws. This is one way to include the output of a different model as the prior to a new model. That said, it's usually best to try and incorporate the model directly into the code. There are a few examples on GitHub of this, including atmosphere model grids, cooling tracks, etc.

Using a KDE

First, we will generate some data. In the real world, you would load this data eg. from a CSV file.

using Octofitter, Distributions

# create a smoothed KDE estimate of the samples from a 10+-1 gaussian
kde = Octofitter.KDEDist(randn(1000).+10)
KDEDist kernel density estimate distribution

Note that in Octofitter the KDE will have its support truncated to the minimum and maximum values that occur in your dataset, ie. it doesn't allow for infinite long tails.

Now add it to your model as a prior:

planet_b = Planet(
    name="b",
    basis=Visual{KepOrbit},
    likelihoods=[],
    variables=@variables begin
        a ~ kde # Sample from the KDE here
        e ~ Uniform(0.0, 0.99)
        i ~ Sine()
        M = system.M
        ω ~ UniformCircular()
        Ω ~ UniformCircular()
        θ ~ UniformCircular()
        tp = θ_at_epoch_to_tperi(θ, 50000; M, e, a, i, ω, Ω)
    end
)

sys = System(
    name="Tutoria",
    companions=[planet_b],
    likelihoods=[],
    variables=@variables begin
        M ~ truncated(Normal(1.2, 0.1), lower=0.1)
        plx ~ truncated(Normal(50.0, 0.02), lower=0.1)
    end
)

model = Octofitter.LogDensityModel(sys)
chain = octofit(model)
Chains MCMC chain (1000×29×1 Array{Float64, 3}):

Iterations        = 1:1:1000
Number of chains  = 1
Samples per chain = 1000
Wall duration     = 0.7 seconds
Compute duration  = 0.7 seconds
parameters        = M, plx, b_a, b_e, b_i, b_ωx, b_ωy, b_Ωx, b_Ωy, b_θx, b_θy, b_ω, b_Ω, b_θ, b_M, b_tp
internals         = n_steps, is_accept, acceptance_rate, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size, is_adapt, loglike, logpost, tree_depth, numerical_error

Summary Statistics
  parameters         mean         std       mcse    ess_bulk   ess_tail      r ⋯
      Symbol      Float64     Float64    Float64     Float64    Float64   Floa ⋯

           M       1.1969      0.1005     0.0033    937.7693   717.2317    1.0 ⋯
         plx      49.9998      0.0191     0.0006    930.2696   563.8658    0.9 ⋯
         b_a      10.0255      0.9952     0.0304   1121.6636   385.8010    0.9 ⋯
         b_e       0.4899      0.2790     0.0081   1071.8791   593.4862    0.9 ⋯
         b_i       1.6153      0.6870     0.0230    844.5503   552.0452    1.0 ⋯
        b_ωx      -0.0167      0.7128     0.0369    419.1835   730.0627    1.0 ⋯
        b_ωy       0.0439      0.7109     0.0374    375.9485   657.2104    1.0 ⋯
        b_Ωx       0.0326      0.7139     0.0400    389.0544   865.5821    1.0 ⋯
        b_Ωy      -0.0368      0.7120     0.0372    403.7078   828.2662    1.0 ⋯
        b_θx      -0.0248      0.7151     0.0339    485.4289   808.4078    0.9 ⋯
        b_θy      -0.0416      0.7059     0.0431    299.3926   936.1210    0.9 ⋯
         b_ω       0.0721      1.8403     0.0870    505.6468   679.6304    1.0 ⋯
         b_Ω      -0.0591      1.7799     0.0814    551.6122   705.4142    1.0 ⋯
         b_θ      -0.0420      1.8432     0.0945    444.8333   768.4978    1.0 ⋯
         b_M       1.1969      0.1005     0.0033    937.7693   717.2317    1.0 ⋯
        b_tp   44409.4072   4276.0459   156.5845    683.9550   726.3208    1.0 ⋯
                                                               2 columns omitted

Quantiles
  parameters         2.5%        25.0%        50.0%        75.0%        97.5%
      Symbol      Float64      Float64      Float64      Float64      Float64

           M       1.0037       1.1344       1.1968       1.2620       1.4024
         plx      49.9637      49.9869      49.9996      50.0123      50.0386
         b_a       7.9866       9.3574      10.0005      10.6639      12.1013
         b_e       0.0289       0.2558       0.4748       0.7269       0.9629
         b_i       0.2991       1.0817       1.6502       2.1267       2.8902
        b_ωx      -1.0602      -0.7165      -0.0270       0.6846       1.0630
        b_ωy      -1.0671      -0.6215       0.0682       0.7315       1.0946
        b_Ωx      -1.0653      -0.6830       0.0555       0.7213       1.0641
        b_Ωy      -1.0893      -0.7316      -0.0923       0.6691       1.0675
        b_θx      -1.0467      -0.7340      -0.0597       0.6987       1.0590
        b_θy      -1.0557      -0.7270      -0.0735       0.6157       1.0607
         b_ω      -3.0121      -1.4944       0.0942       1.6973       2.9965
         b_Ω      -2.9818      -1.5671      -0.1612       1.4555       2.9836
         b_θ      -2.9383      -1.6358      -0.1039       1.5994       2.9969
         b_M       1.0037       1.1344       1.1968       1.2620       1.4024
        b_tp   37181.6859   40626.7649   44400.5011   48884.8245   49976.9499

We now examine the posterior and verify that it matches our KDE prior:

dat = chain[:b_a][:]
@show mean(dat) std(dat)
mean(dat) = 10.025538455031622
std(dat) = 0.9951678466281022

Observable Based Priors

Octofitter implements observable-based priors from O'Neil 2019 for relative astrometry. You can fit a model to astrometry using observable-based priors using the following recipe:

using Octofitter, Distributions

astrom_dat = Table(
    epoch=[mjd("2020-12-20")], 
    ra=[400.0], 
    σ_ra=[5.0], 
    dec=[400.0], 
    σ_dec=[5.0]
)
astrom_like = PlanetRelAstromLikelihood(astrom_dat, name="rel astrom. 1")

planet_b = Planet(
    name="b",
    basis=Visual{KepOrbit},
    likelihoods=[ObsPriorAstromONeil2019(astrom_like)],
    variables=@variables begin
        # For using with ObsPriors:
        P ~ Uniform(0.001, 1000)
        M = system.M
        a = cbrt(M * P^2)

        e ~ Uniform(0.0, 1.0)
        i ~ Sine()
        ω ~ UniformCircular()
        Ω ~ UniformCircular()
        mass ~ LogUniform(0.01, 100)

        τ ~ UniformCircular(1.0)
        tp = τ*P*365.25 + 58849 # reference epoch for τ. Choose an MJD date near your data.
    end
)

sys = System(
    name="System1",
    companions=[planet_b],
    likelihoods=[],
    variables=@variables begin
        plx ~ Normal(21.219, 0.060)
        M ~ truncated(Normal(1.1, 0.2),lower=0.1)
    end
)