Priors

All parameters to your model must have a prior defined. You may provide any continuous, univariate distribution from the Distributions.jl. A few useful distributions include:

  • Normal
  • Uniform
  • LogNormal
  • LogUniform
  • TrucatedNormal
  • VonMises

This pacakge also defines the Sine() distribution for e.g. inclination priors and UniformCircular() for periodic variables. Internally, UniformCircular() creates two standard normal variables and finds the angle between them using arctan. This allows the sampler to smoothly cycle past the ends of the domain. You can specify a different circular domain than (0,2pi) by passing the size of the domain e.g. τ = UniformCircular(1.0).

The VonMise distribution is notable but not commonly used. It is the analog of a normal distribution defined on a circular domain (-π, +π). If you have a Gaussian prior on an angular parameter, a Von Mises distribution is probably more appropriate.

Behind the scenes, Octofitter remaps your parameters to unconstrained domains using the Bijectors.jl (and corrects the priors accordingly). This is essential for good sampling efficiency with HMC based samplers.

This means that e.g. if you define the eccentricity prior as e=Uniform(0,0.5), the sampler will actually generate values across the whole real line and transform them back into the [0,0.5] range before evaluating the orbit. It is therefore essential that your priors do not include invalid domains.

For example, setting a=Normal(3,2) will result in poor sampling efficiency as sometimes negative values for semi-major axis will be drawn (especially if you're using the parallel tempered sampler).

Instead, for parameters like semi-major axis, eccentricity, parallax, and masses, you should truncate any distributions that have negative tails. This can easily be accomplished with TrauncatedNormal or Trunacted(dist, low, high) for any arbitrary distribution.

Kernel Density Estimate Priors

Octofitter has support for sampling from smoothed kernel density estimate priors. These are non-parametric distributions fit to a 1D dataset consisting of random draws. This is one way to include the output of a different model as the prior to a new model. That said, it's usually best to try and incorporate the model directly into the code. There are a few examples on GitHub of this, including atmosphere model grids, cooling tracks, etc.

Using a KDE

First, we will generate some data. In the real world, you would load this data eg. from a CSV file.

using Octofitter, Distributions

# create a smoothed KDE estimate of the samples from a 10+-1 gaussian
kde = Octofitter.KDEDist(randn(1000).+10)
KDEDist kernel density estimate distribution

Note that in Octofitter the KDE will have its support truncated to the minimum and maximum values that occur in your dataset, ie. it doesn't allow for infinite long tails.

Now add it to your model as a prior:

planet_b = Planet(
    name="b",
    basis=Visual{KepOrbit},
    likelihoods=[],
    variables=@variables begin
        a ~ kde # Sample from the KDE here
        e ~ Uniform(0.0, 0.99)
        i ~ Sine()
        M = system.M
        ω ~ UniformCircular()
        Ω ~ UniformCircular()
        θ ~ UniformCircular()
        tp = θ_at_epoch_to_tperi(θ, 50000; M, e, a, i, ω, Ω)
    end
)

sys = System(
    name="Tutoria",
    companions=[planet_b],
    likelihoods=[],
    variables=@variables begin
        M ~ truncated(Normal(1.2, 0.1), lower=0.1)
        plx ~ truncated(Normal(50.0, 0.02), lower=0.1)
    end
)

model = Octofitter.LogDensityModel(sys)
chain = octofit(model)
Chains MCMC chain (1000×29×1 Array{Float64, 3}):

Iterations        = 1:1:1000
Number of chains  = 1
Samples per chain = 1000
Wall duration     = 0.74 seconds
Compute duration  = 0.74 seconds
parameters        = M, plx, b_a, b_e, b_i, b_ωx, b_ωy, b_Ωx, b_Ωy, b_θx, b_θy, b_ω, b_Ω, b_θ, b_M, b_tp
internals         = n_steps, is_accept, acceptance_rate, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size, is_adapt, loglike, logpost, tree_depth, numerical_error

Summary Statistics
  parameters         mean         std       mcse    ess_bulk   ess_tail      r ⋯
      Symbol      Float64     Float64    Float64     Float64    Float64   Floa ⋯

           M       1.1964      0.0992     0.0035    780.0701   445.3695    0.9 ⋯
         plx      50.0009      0.0202     0.0006   1134.3612   667.6113    0.9 ⋯
         b_a      10.0042      1.0215     0.0325    984.2824   526.8577    1.0 ⋯
         b_e       0.4868      0.2780     0.0091    808.8773   483.5906    0.9 ⋯
         b_i       1.5811      0.7328     0.0240    878.2833   563.6076    0.9 ⋯
        b_ωx      -0.0827      0.6987     0.0354    362.5779   730.2270    1.0 ⋯
        b_ωy      -0.0181      0.7205     0.0404    359.4392   749.2339    1.0 ⋯
        b_Ωx       0.0337      0.7010     0.0331    497.8907   762.1141    0.9 ⋯
        b_Ωy       0.0325      0.7197     0.0434    280.2408   638.6893    0.9 ⋯
        b_θx       0.0335      0.7162     0.0341    484.0497   907.8532    1.0 ⋯
        b_θy       0.0217      0.7167     0.0377    378.0742   793.9253    0.9 ⋯
         b_ω      -0.0537      1.8990     0.0881    551.7850   773.9769    1.0 ⋯
         b_Ω       0.0381      1.7641     0.0936    398.9816   607.7017    1.0 ⋯
         b_θ       0.1058      1.7772     0.0809    551.2386   903.5186    1.0 ⋯
         b_M       1.1964      0.0992     0.0035    780.0701   445.3695    0.9 ⋯
        b_tp   44611.0815   4165.0284   154.5461    710.7708   723.6651    1.0 ⋯
                                                               2 columns omitted

Quantiles
  parameters         2.5%        25.0%        50.0%        75.0%        97.5%
      Symbol      Float64      Float64      Float64      Float64      Float64

           M       1.0045       1.1244       1.1956       1.2700       1.3782
         plx      49.9604      49.9885      50.0007      50.0134      50.0416
         b_a       7.9762       9.3051      10.0341      10.7216      11.8698
         b_e       0.0150       0.2458       0.4948       0.7085       0.9717
         b_i       0.2484       1.0001       1.6028       2.1526       2.8315
        b_ωx      -1.0715      -0.7369      -0.1336       0.5816       1.0529
        b_ωy      -1.0542      -0.7143      -0.0908       0.7127       1.0596
        b_Ωx      -1.0498      -0.6513       0.0883       0.7099       1.0344
        b_Ωy      -1.0542      -0.6880       0.1240       0.7319       1.0622
        b_θx      -1.0596      -0.6708       0.0158       0.7273       1.0708
        b_θy      -1.0674      -0.6896       0.0661       0.7160       1.0649
         b_ω      -3.0096      -1.7842      -0.1809       1.6790       3.0233
         b_Ω      -2.9702      -1.4645       0.1812       1.4946       2.8831
         b_θ      -2.9654      -1.3651       0.1697       1.6892       2.9740
         b_M       1.0045       1.1244       1.1956       1.2700       1.3782
        b_tp   37486.3023   40821.7544   44662.9012   48965.8437   49977.1226

We now examine the posterior and verify that it matches our KDE prior:

dat = chain[:b_a][:]
@show mean(dat) std(dat)
mean(dat) = 10.004177181437628
std(dat) = 1.0215283329451312

Observable Based Priors

Octofitter implements observable-based priors from O'Neil 2019 for relative astrometry. You can fit a model to astrometry using observable-based priors using the following recipe:

using Octofitter, Distributions

astrom_dat = Table(
    epoch=[mjd("2020-12-20")], 
    ra=[400.0], 
    σ_ra=[5.0], 
    dec=[400.0], 
    σ_dec=[5.0]
)
astrom_like = PlanetRelAstromLikelihood(astrom_dat, name="rel astrom. 1")

planet_b = Planet(
    name="b",
    basis=Visual{KepOrbit},
    likelihoods=[ObsPriorAstromONeil2019(astrom_like)],
    variables=@variables begin
        # For using with ObsPriors:
        P ~ Uniform(0.001, 1000)
        M = system.M
        a = cbrt(M * P^2)

        e ~ Uniform(0.0, 1.0)
        i ~ Sine()
        ω ~ UniformCircular()
        Ω ~ UniformCircular()
        mass ~ LogUniform(0.01, 100)

        τ ~ UniformCircular(1.0)
        tp = τ*P*365.25 + 58849 # reference epoch for τ. Choose an MJD date near your data.
    end
)

sys = System(
    name="System1",
    companions=[planet_b],
    likelihoods=[],
    variables=@variables begin
        plx ~ Normal(21.219, 0.060)
        M ~ truncated(Normal(1.1, 0.2),lower=0.1)
    end
)