Priors

All parameters to your model must have a prior defined. You may provide any continuous, univariate distribution from the Distributions.jl. A few useful distributions include:

  • Normal
  • Uniform
  • LogNormal
  • LogUniform
  • TrucatedNormal
  • VonMises

This pacakge also defines the Sine() distribution for e.g. inclination priors and UniformCircular() for periodic variables. Internally, UniformCircular() creates two standard normal variables and finds the angle between them using arctan. This allows the sampler to smoothly cycle past the ends of the domain. You can specify a different circular domain than (0,2pi) by passing the size of the domain e.g. τ = UniformCircular(1.0).

The VonMise distribution is notable but not commonly used. It is the analog of a normal distribution defined on a circular domain (-π, +π). If you have a Gaussian prior on an angular parameter, a Von Mises distribution is probably more appropriate.

Behind the scenes, Octofitter remaps your parameters to unconstrained domains using the Bijectors.jl (and corrects the priors accordingly). This is essential for good sampling efficiency with HMC based samplers.

This means that e.g. if you define the eccentricity prior as e=Uniform(0,0.5), the sampler will actually generate values across the whole real line and transform them back into the [0,0.5] range before evaluating the orbit. It is therefore essential that your priors do not include invalid domains.

For example, setting a=Normal(3,2) will result in poor sampling efficiency as sometimes negative values for semi-major axis will be drawn (especially if you're using the parallel tempered sampler).

Instead, for parameters like semi-major axis, eccentricity, parallax, and masses, you should truncate any distributions that have negative tails. This can easily be accomplished with TrauncatedNormal or Trunacted(dist, low, high) for any arbitrary distribution.

Kernel Density Estimate Priors

Octofitter has support for sampling from smoothed kernel density estimate priors. These are non-parametric distributions fit to a 1D dataset consisting of random draws. This is one way to include the output of a different model as the prior to a new model. That said, it's usually best to try and incorporate the model directly into the code. There are a few examples on GitHub of this, including atmosphere model grids, cooling tracks, etc.

Using a KDE

First, we will generate some data. In the real world, you would load this data eg. from a CSV file.

using Octofitter, Distributions

# create a smoothed KDE estimate of the samples from a 10+-1 gaussian
kde = Octofitter.KDEDist(randn(1000).+10)
KDEDist kernel density estimate distribution

Note that in Octofitter the KDE will have its support truncated to the minimum and maximum values that occur in your dataset, ie. it doesn't allow for infinite long tails.

Now add it to your model as a prior:

planet_b = Planet(
    name="b",
    basis=Visual{KepOrbit},
    observations=[],
    variables=@variables begin
        a ~ kde # Sample from the KDE here
        e ~ Uniform(0.0, 0.99)
        i ~ Sine()
        M = system.M
        ω ~ UniformCircular()
        Ω ~ UniformCircular()
        θ ~ UniformCircular()
        tp = θ_at_epoch_to_tperi(θ, 50000; M, e, a, i, ω, Ω)
    end
)

sys = System(
    name="Tutoria",
    companions=[planet_b],
    observations=[],
    variables=@variables begin
        M ~ truncated(Normal(1.2, 0.1), lower=0.1)
        plx ~ truncated(Normal(50.0, 0.02), lower=0.1)
    end
)

model = Octofitter.LogDensityModel(sys)
chain = octofit(model)
Chains MCMC chain (1000×29×1 Array{Float64, 3}):

Iterations        = 1:1:1000
Number of chains  = 1
Samples per chain = 1000
Wall duration     = 0.74 seconds
Compute duration  = 0.74 seconds
parameters        = M, plx, b_a, b_e, b_i, b_ωx, b_ωy, b_Ωx, b_Ωy, b_θx, b_θy, b_ω, b_Ω, b_θ, b_M, b_tp
internals         = n_steps, is_accept, acceptance_rate, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size, is_adapt, loglike, logpost, tree_depth, numerical_error

Summary Statistics
  parameters         mean         std       mcse    ess_bulk   ess_tail      r ⋯
      Symbol      Float64     Float64    Float64     Float64    Float64   Floa ⋯

           M       1.1966      0.0960     0.0027   1296.0198   750.6289    0.9 ⋯
         plx      50.0003      0.0208     0.0007   1025.8708   557.5463    1.0 ⋯
         b_a      10.0139      1.0169     0.0301   1114.6219   487.5108    0.9 ⋯
         b_e       0.4896      0.2820     0.0072   1335.9526   360.6835    1.0 ⋯
         b_i       1.5694      0.6724     0.0204   1096.8306   626.2593    1.0 ⋯
        b_ωx      -0.0503      0.7175     0.0383    386.6100   880.2411    0.9 ⋯
        b_ωy       0.0059      0.7047     0.0351    418.4184   674.2741    0.9 ⋯
        b_Ωx       0.0721      0.7159     0.0366    416.5615   734.7819    0.9 ⋯
        b_Ωy      -0.0229      0.7087     0.0391    364.6281   624.2854    1.0 ⋯
        b_θx      -0.0371      0.7178     0.0392    357.5967   773.6396    1.0 ⋯
        b_θy      -0.0130      0.7179     0.0374    423.5745   880.2411    1.0 ⋯
         b_ω      -0.0119      1.8656     0.0834    600.3754   720.5786    0.9 ⋯
         b_Ω      -0.0253      1.7409     0.0890    424.4974   715.0619    1.0 ⋯
         b_θ       0.0192      1.8503     0.0836    594.9518   822.5266    1.0 ⋯
         b_M       1.1966      0.0960     0.0027   1296.0198   750.6289    0.9 ⋯
        b_tp   44666.3822   4192.2829   146.5527    855.6908   713.6437    1.0 ⋯
                                                               2 columns omitted

Quantiles
  parameters         2.5%        25.0%        50.0%        75.0%        97.5%
      Symbol      Float64      Float64      Float64      Float64      Float64

           M       1.0118       1.1310       1.1930       1.2680       1.3755
         plx      49.9614      49.9858      50.0000      50.0144      50.0416
         b_a       8.0385       9.3084      10.0710      10.7195      12.0121
         b_e       0.0189       0.2440       0.4860       0.7264       0.9559
         b_i       0.3061       1.0799       1.5932       2.0496       2.7913
        b_ωx      -1.0795      -0.7360      -0.1147       0.6612       1.0660
        b_ωy      -1.0586      -0.7002       0.0200       0.7055       1.0465
        b_Ωx      -1.0281      -0.6608       0.1106       0.7713       1.0766
        b_Ωy      -1.0960      -0.7071      -0.0351       0.6543       1.0655
        b_θx      -1.0771      -0.7320      -0.0269       0.6621       1.0616
        b_θy      -1.0811      -0.7229      -0.0363       0.7059       1.0522
         b_ω      -3.0079      -1.7221       0.0664       1.6739       2.9765
         b_Ω      -2.9558      -1.4775      -0.0527       1.4030       2.9818
         b_θ      -3.0216      -1.5733      -0.0520       1.6486       2.9876
         b_M       1.0118       1.1310       1.1930       1.2680       1.3755
        b_tp   37611.5466   40883.7790   44954.5359   48986.4519   49979.6308

We now examine the posterior and verify that it matches our KDE prior:

dat = chain[:b_a][:]
@show mean(dat) std(dat)
mean(dat) = 10.013866043588864
std(dat) = 1.0169483306361544

Observable Based Priors

Octofitter implements observable-based priors from O'Neil 2019 for relative astrometry. You can fit a model to astrometry using observable-based priors using the following recipe:

using Octofitter, Distributions

astrom_dat = Table(
    epoch=[mjd("2020-12-20")], 
    ra=[400.0], 
    σ_ra=[5.0], 
    dec=[400.0], 
    σ_dec=[5.0]
)
astrom_obs = PlanetRelAstromObs(astrom_dat, name="rel astrom. 1")

planet_b = Planet(
    name="b",
    basis=Visual{KepOrbit},
    observations=[ObsPriorAstromONeil2019(astrom_obs)],
    variables=@variables begin
        # For using with ObsPriors:
        P ~ Uniform(0.001, 1000)
        M = system.M
        a = cbrt(M * P^2)

        e ~ Uniform(0.0, 1.0)
        i ~ Sine()
        ω ~ UniformCircular()
        Ω ~ UniformCircular()
        mass ~ LogUniform(0.01, 100)

        τ ~ UniformCircular(1.0)
        tp = τ*P*365.25 + 58849 # reference epoch for τ. Choose an MJD date near your data.
    end
)

sys = System(
    name="System1",
    companions=[planet_b],
    observations=[],
    variables=@variables begin
        plx ~ Normal(21.219, 0.060)
        M ~ truncated(Normal(1.1, 0.2),lower=0.1)
    end
)