Priors

All parameters to your model must have a prior defined. You may provide any continuous, univariate distribution from the Distributions.jl. A few useful distributions include:

  • Normal
  • Uniform
  • LogNormal
  • LogUniform
  • TrucatedNormal
  • VonMises

This pacakge also defines the Sine() distribution for e.g. inclination priors and UniformCircular() for periodic variables. Internally, UniformCircular() creates two standard normal variables and finds the angle between them using arctan. This allows the sampler to smoothly cycle past the ends of the domain. You can specify a different circular domain than (0,2pi) by passing the size of the domain e.g. τ = UniformCircular(1.0).

The VonMise distribution is notable but not commonly used. It is the analog of a normal distribution defined on a circular domain (-π, +π). If you have a Gaussian prior on an angular parameter, a Von Mises distribution is probably more appropriate.

Behind the scenes, Octofitter remaps your parameters to unconstrained domains using the Bijectors.jl (and corrects the priors accordingly). This is essential for good sampling efficiency with HMC based samplers.

This means that e.g. if you define the eccentricity prior as e=Uniform(0,0.5), the sampler will actually generate values across the whole real line and transform them back into the [0,0.5] range before evaluating the orbit. It is therefore essential that your priors do not include invalid domains.

For example, setting a=Normal(3,2) will result in poor sampling efficiency as sometimes negative values for semi-major axis will be drawn (especially if you're using the parallel tempered sampler).

Instead, for parameters like semi-major axis, eccentricity, parallax, and masses, you should truncate any distributions that have negative tails. This can easily be accomplished with TrauncatedNormal or Trunacted(dist, low, high) for any arbitrary distribution.

Kernel Density Estimate Priors

Octofitter has support for sampling from smoothed kernel density estimate priors. These are non-parametric distributions fit to a 1D dataset consisting of random draws. This is one way to include the output of a different model as the prior to a new model. That said, it's usually best to try and incorporate the model directly into the code. There are a few examples on GitHub of this, including atmosphere model grids, cooling tracks, etc.

Using a KDE

First, we will generate some data. In the real world, you would load this data eg. from a CSV file.

using Octofitter, Distributions

# create a smoothed KDE estimate of the samples from a 10+-1 gaussian
kde = Octofitter.KDEDist(randn(1000).+10)
KDEDist kernel density estimate distribution

Note that in Octofitter the KDE will have its support truncated to the minimum and maximum values that occur in your dataset, ie. it doesn't allow for infinite long tails.

Now add it to your model as a prior:

@planet b Visual{KepOrbit} begin
    a ~ kde # Sample from the KDE here
    e ~ Uniform(0.0, 0.99)
    i ~ Sine()
    ω ~ UniformCircular()
    Ω ~ UniformCircular()
    θ ~ UniformCircular()
    tp = θ_at_epoch_to_tperi(system,b,50000)
end
@system Tutoria begin
    M ~ truncated(Normal(1.2, 0.1), lower=0)
    plx ~ truncated(Normal(50.0, 0.02), lower=0)
end b
model = Octofitter.LogDensityModel(Tutoria)
chain = octofit(model)
Chains MCMC chain (1000×28×1 Array{Float64, 3}):

Iterations        = 1:1:1000
Number of chains  = 1
Samples per chain = 1000
Wall duration     = 1.21 seconds
Compute duration  = 1.21 seconds
parameters        = M, plx, b_a, b_e, b_i, b_ωy, b_ωx, b_Ωy, b_Ωx, b_θy, b_θx, b_ω, b_Ω, b_θ, b_tp
internals         = n_steps, is_accept, acceptance_rate, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size, is_adapt, loglike, logpost, tree_depth, numerical_error

Summary Statistics
  parameters         mean         std       mcse    ess_bulk   ess_tail      r ⋯
      Symbol      Float64     Float64    Float64     Float64    Float64   Floa ⋯

           M       1.1991      0.0973     0.0033    879.7753   534.8883    0.9 ⋯
         plx      50.0000      0.0207     0.0007    998.7142   608.3330    1.0 ⋯
         b_a      10.0879      0.9853     0.0243   1658.5992   538.1545    1.0 ⋯
         b_e       0.4915      0.2837     0.0101    710.4447   508.8646    1.0 ⋯
         b_i       1.5671      0.6452     0.0169   1386.6076   466.0071    1.0 ⋯
        b_ωy       0.0560      0.7254     0.0375    414.9906   826.9773    0.9 ⋯
        b_ωx      -0.0421      0.6979     0.0359    411.9189   873.7012    1.0 ⋯
        b_Ωy      -0.0382      0.6986     0.0366    400.3099   728.4223    1.0 ⋯
        b_Ωx       0.0060      0.7284     0.0368    414.2744   740.0617    1.0 ⋯
        b_θy      -0.0377      0.7230     0.0398    385.3020   817.5571    1.0 ⋯
        b_θx       0.0308      0.7021     0.0382    377.8799   756.0302    0.9 ⋯
         b_ω      -0.1123      1.7563     0.0788    560.0360   663.0874    0.9 ⋯
         b_Ω       0.0412      1.8456     0.0825    576.5257   676.4312    1.0 ⋯
         b_θ      -0.0104      1.8644     0.1042    357.6878   786.3909    1.0 ⋯
        b_tp   45115.0905   4212.4893   137.9517    964.6217   820.4943    0.9 ⋯
                                                               2 columns omitted

Quantiles
  parameters         2.5%        25.0%        50.0%        75.0%        97.5%
      Symbol      Float64      Float64      Float64      Float64      Float64

           M       1.0149       1.1332       1.1998       1.2615       1.3860
         plx      49.9605      49.9858      50.0005      50.0129      50.0416
         b_a       8.2186       9.3902      10.0639      10.7489      12.0129
         b_e       0.0318       0.2420       0.4877       0.7274       0.9724
         b_i       0.3651       1.1140       1.5572       2.0372       2.8279
        b_ωy      -1.0530      -0.6767       0.0887       0.7767       1.0619
        b_ωx      -1.0718      -0.7316      -0.0617       0.6107       1.0648
        b_Ωy      -1.0466      -0.7057      -0.0742       0.6609       1.0490
        b_Ωx      -1.0723      -0.7083       0.0185       0.7256       1.0747
        b_θy      -1.0582      -0.7526      -0.1055       0.6796       1.0603
        b_θx      -1.0545      -0.6241       0.0639       0.7006       1.0752
         b_ω      -2.9887      -1.5715      -0.1183       1.2978       2.9528
         b_Ω      -2.9127      -1.6390       0.0511       1.6671       2.9742
         b_θ      -2.9971      -1.7029       0.1093       1.5750       2.9931
        b_tp   37733.2034   41242.4624   45477.7792   49461.4940   50400.8239

We now examine the posterior and verify that it matches our KDE prior:

dat = chain[:b_a][:]
@show mean(dat) std(dat)
mean(dat) = 10.08791324480641
std(dat) = 0.9853012482722847

Observable Based Priors

Octofitter implements observable-based priors from O'Neil 2019 for relative astrometry. You can fit a model to astrometry using observable-based priors using the following recipe:

using Octofitter, Distributions

astrom_like = PlanetRelAstromLikelihood(
    (;epoch=mjd("2020-12-20"), ra=400.0, σ_ra=5.0, dec=400.0, σ_dec=5.0)
)

@planet b Visual{KepOrbit} begin
    # For using with ObsPriors:
    P ~ Uniform(0.001, 1000)
    a = cbrt(system.M * b.P^2)

    e ~ Uniform(0.0, 1.0)
    i ~ Sine()
    ω ~ UniformCircular()
    Ω ~ UniformCircular()
    mass ~ LogUniform(0.01, 100)

    τ ~ UniformCircular(1.0)
    tp =  b.τ*b.P*365.25 + 58849 # reference epoch for τ. Choose an MJD date near your data.
end astrom_like ObsPriorAstromONeil2019(astrom_like);

@system System1 begin
    plx ~ Normal(21.219, 0.060)
	M ~ truncated(Normal(1.1, 0.2),lower=0)
end b