Priors

All parameters to your model must have a prior defined. You may provide any continuous, univariate distribution from the Distributions.jl. A few useful distributions include:

  • Normal
  • Uniform
  • LogNormal
  • LogUniform
  • TrucatedNormal
  • VonMises

This pacakge also defines the Sine() distribution for e.g. inclination priors and UniformCircular() for periodic variables. Internally, UniformCircular() creates two standard normal variables and finds the angle between them using arctan. This allows the sampler to smoothly cycle past the ends of the domain. You can specify a different circular domain than (0,2pi) by passing the size of the domain e.g. τ = UniformCircular(1.0).

The VonMise distribution is notable but not commonly used. It is the analog of a normal distribution defined on a circular domain (-π, +π). If you have a Gaussian prior on an angular parameter, a Von Mises distribution is probably more appropriate.

Behind the scenes, Octofitter remaps your parameters to unconstrained domains using the Bijectors.jl (and corrects the priors accordingly). This is essential for good sampling efficiency with HMC based samplers.

This means that e.g. if you define the eccentricity prior as e=Uniform(0,0.5), the sampler will actually generate values across the whole real line and transform them back into the [0,0.5] range before evaluating the orbit. It is therefore essential that your priors do not include invalid domains.

For example, setting a=Normal(3,2) will result in poor sampling efficiency as sometimes negative values for semi-major axis will be drawn (especially if you're using the parallel tempered sampler).

Instead, for parameters like semi-major axis, eccentricity, parallax, and masses, you should truncate any distributions that have negative tails. This can easily be accomplished with TrauncatedNormal or Trunacted(dist, low, high) for any arbitrary distribution.

Kernel Density Estimate Priors

Octofitter has support for sampling from smoothed kernel density estimate priors. These are non-parametric distributions fit to a 1D dataset consisting of random draws. This is one way to include the output of a different model as the prior to a new model. That said, it's usually best to try and incorporate the model directly into the code. There are a few examples on GitHub of this, including atmosphere model grids, cooling tracks, etc.

Using a KDE

First, we will generate some data. In the real world, you would load this data eg. from a CSV file.

using Octofitter, Distributions

# create a smoothed KDE estimate of the samples from a 10+-1 gaussian
kde = Octofitter.KDEDist(randn(1000).+10)
KDEDist kernel density estimate distribution

Note that in Octofitter the KDE will have its support truncated to the minimum and maximum values that occur in your dataset, ie. it doesn't allow for infinite long tails.

Now add it to your model as a prior:

@planet b Visual{KepOrbit} begin
    a ~ kde # Sample from the KDE here
    e ~ Uniform(0.0, 0.99)
    i ~ Sine()
    ω ~ UniformCircular()
    Ω ~ UniformCircular()
    θ ~ UniformCircular()
    tp = θ_at_epoch_to_tperi(system,b,50000)
end
@system Tutoria begin
    M ~ truncated(Normal(1.2, 0.1), lower=0.1)
    plx ~ truncated(Normal(50.0, 0.02), lower=0.1)
end b
model = Octofitter.LogDensityModel(Tutoria)
chain = octofit(model)
Chains MCMC chain (1000×28×1 Array{Float64, 3}):

Iterations        = 1:1:1000
Number of chains  = 1
Samples per chain = 1000
Wall duration     = 0.89 seconds
Compute duration  = 0.89 seconds
parameters        = M, plx, b_a, b_e, b_i, b_ωy, b_ωx, b_Ωy, b_Ωx, b_θy, b_θx, b_ω, b_Ω, b_θ, b_tp
internals         = n_steps, is_accept, acceptance_rate, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size, is_adapt, loglike, logpost, tree_depth, numerical_error

Summary Statistics
  parameters         mean         std       mcse    ess_bulk   ess_tail      r ⋯
      Symbol      Float64     Float64    Float64     Float64    Float64   Floa ⋯

           M       1.2016      0.0953     0.0028   1193.3415   850.2053    0.9 ⋯
         plx      50.0000      0.0190     0.0006   1109.4943   682.9616    0.9 ⋯
         b_a      10.0308      1.0203     0.0325    982.1958   579.3455    0.9 ⋯
         b_e       0.4931      0.2738     0.0072   1349.0629   770.8007    1.0 ⋯
         b_i       1.5537      0.6845     0.0194   1228.6861   462.2799    1.0 ⋯
        b_ωy      -0.0643      0.7126     0.0360    423.6061   810.5295    1.0 ⋯
        b_ωx       0.0127      0.7179     0.0389    395.2441   907.0437    0.9 ⋯
        b_Ωy      -0.0114      0.7231     0.0396    370.4693   742.3334    1.0 ⋯
        b_Ωx      -0.0192      0.7053     0.0369    413.2617   757.6431    1.0 ⋯
        b_θy      -0.0398      0.7264     0.0361    460.9917   787.9826    0.9 ⋯
        b_θx       0.0513      0.7048     0.0351    421.3165   752.0955    1.0 ⋯
         b_ω       0.0061      1.8901     0.0919    525.3204   948.0926    1.0 ⋯
         b_Ω       0.0070      1.8343     0.0904    452.7901   786.7921    1.0 ⋯
         b_θ       0.0905      1.8639     0.0819    613.2987   689.9743    1.0 ⋯
        b_tp   44962.5462   4184.9921   157.5528    786.5327   749.0070    1.0 ⋯
                                                               2 columns omitted

Quantiles
  parameters         2.5%        25.0%        50.0%        75.0%        97.5%
      Symbol      Float64      Float64      Float64      Float64      Float64

           M       1.0140       1.1351       1.1996       1.2657       1.3880
         plx      49.9640      49.9871      49.9996      50.0133      50.0363
         b_a       8.0621       9.3239      10.0331      10.7270      11.9378
         b_e       0.0406       0.2536       0.4934       0.7272       0.9487
         b_i       0.3359       1.0416       1.5349       2.0485       2.8194
        b_ωy      -1.0977      -0.7308      -0.0744       0.6152       1.0745
        b_ωx      -1.0567      -0.6917      -0.0033       0.7477       1.0760
        b_Ωy      -1.0494      -0.7324      -0.0585       0.7189       1.0866
        b_Ωx      -1.0752      -0.7121      -0.0182       0.6577       1.0530
        b_θy      -1.0807      -0.7480      -0.0935       0.6937       1.0685
        b_θx      -1.0503      -0.6379       0.0614       0.7371       1.0762
         b_ω      -3.0421      -1.6332      -0.0032       1.6758       3.0108
         b_Ω      -2.9551      -1.6065      -0.0200       1.6513       2.9791
         b_θ      -3.0203      -1.5430       0.1583       1.7686       3.0250
        b_tp   37827.8837   41229.1748   44966.7271   49452.3475   50397.3177

We now examine the posterior and verify that it matches our KDE prior:

dat = chain[:b_a][:]
@show mean(dat) std(dat)
mean(dat) = 10.030821112683714
std(dat) = 1.020338841682584

Observable Based Priors

Octofitter implements observable-based priors from O'Neil 2019 for relative astrometry. You can fit a model to astrometry using observable-based priors using the following recipe:

using Octofitter, Distributions

astrom_like = PlanetRelAstromLikelihood(
    (;epoch=mjd("2020-12-20"), ra=400.0, σ_ra=5.0, dec=400.0, σ_dec=5.0)
)

@planet b Visual{KepOrbit} begin
    # For using with ObsPriors:
    P ~ Uniform(0.001, 1000)
    a = cbrt(system.M * b.P^2)

    e ~ Uniform(0.0, 1.0)
    i ~ Sine()
    ω ~ UniformCircular()
    Ω ~ UniformCircular()
    mass ~ LogUniform(0.01, 100)

    τ ~ UniformCircular(1.0)
    tp =  b.τ*b.P*365.25 + 58849 # reference epoch for τ. Choose an MJD date near your data.
end astrom_like ObsPriorAstromONeil2019(astrom_like);

@system System1 begin
    plx ~ Normal(21.219, 0.060)
	M ~ truncated(Normal(1.1, 0.2),lower=0.1)
end b