Prior Predictive Checks

The prior predictive distributin of a Bayesian model what you get by sampling parameters directly from the priors and calculating where the model would place the data. For example, if sampling from relative astrometry, the prior predictive model is the distribution of (simulated) astrometry points corresponding to orbits drawn from the prior. For radial velocity data, these would be simulated RV points based on an RV curve drawn from the priors.

To generate a prior predictive distribution, one first needs to create a model. We will use the model and sample data from the Fit Astrometry tutorial:

using Octofitter
using CairoMakie
using PairPlots
using Distributions

astrom_dat = Table(;
    epoch= [50000,50120,50240,50360,50480,50600,50720,50840,],
    ra = [-505.764,-502.57,-498.209,-492.678,-485.977,-478.11,-469.08,-458.896,],
    dec = [-66.9298,-37.4722,-7.92755,21.6356, 51.1472, 80.5359, 109.729, 138.651,],
    σ_ra = fill(50.0, 8),
    σ_dec = fill(50.0, 8),
    cor = fill(0.0, 8)
)
astrom_like = PlanetRelAstromLikelihood(astrom_dat, name="relastrom")
planet_b = Planet(
    name="b",
    basis=Visual{KepOrbit},
    likelihoods=[astrom_like],
    variables=@variables begin
        M = system.M
        a ~ truncated(Normal(10, 4), lower=0, upper=100)
        e ~ Uniform(0.0, 0.5)
        i ~ Sine()
        ω ~ UniformCircular()
        Ω ~ UniformCircular()
        θ_x ~ Normal()
        θ_y ~ Normal()
        θ = atan(θ_y, θ_x)
        tp = θ_at_epoch_to_tperi(θ, 50420; M, e, a, i, ω, Ω)  # reference epoch for θ. Choose an MJD date near your data.
    end
)

sys = System(
    name="Tutoria",
    companions=[planet_b],
    likelihoods=[],
    variables=@variables begin
        M ~ truncated(Normal(1.2, 0.1), lower=0.1)
        plx ~ truncated(Normal(50.0, 0.02), lower=0.1)
    end
)

We can now draw one sample from the prior:

prior_draw_system = generate_from_params(sys)
prior_draw_astrometry = prior_draw_system.planets.b.observations[1]
PlanetRelAstromLikelihood Table with 5 columns and 8 rows:
     epoch  ra       dec       σ_ra  σ_dec
   ┌──────────────────────────────────────
 1 │ 50000  215.151  65.6113   50.0  50.0
 2 │ 50120  187.894  37.5653   50.0  50.0
 3 │ 50240  159.719  9.33707   50.0  50.0
 4 │ 50360  130.706  -18.9385  50.0  50.0
 5 │ 50480  100.958  -47.1052  50.0  50.0
 6 │ 50600  70.6004  -74.985   50.0  50.0
 7 │ 50720  39.7884  -102.378  50.0  50.0
 8 │ 50840  8.70411  -129.062  50.0  50.0

And plot the generated astrometry:

Makie.scatter(prior_draw_astrometry.table.ra, prior_draw_astrometry.table.dec,color=:black, axis=(;autolimitaspect=1,xreversed=true))
Example block output

We can repeat this many times to get a feel for our chosen priors in the domain of our data:

using Random
Random.seed!(1)


fig = Figure()
ax = Axis(
    fig[1,1], xlabel="ra offset [mas]", ylabel="dec offset [mas]",
    xreversed=true,
    aspect=1
)
for i in 1:50
    prior_draw_system = generate_from_params(sys)
    prior_draw_astrometry = prior_draw_system.planets.b.observations[1]
    Makie.scatter!(
        ax,
        prior_draw_astrometry.table.ra,
        prior_draw_astrometry.table.dec,
        color=Makie.cgrad(:turbo)[i/50],
    )
end


Makie.errorbars!(ax,astrom_dat.ra,astrom_dat.dec,astrom_dat.σ_dec,color=:black,linewidth=3)
Makie.errorbars!(ax,astrom_dat.ra,astrom_dat.dec,astrom_dat.σ_ra,direction=:x,color=:black,linewidth=3)

fig
Example block output

The heavy black crosses are our actual data, while the colored ones are simulations drawn from our priors. Notice that our real data lies at a greater separation than most draws from the prior? That might mean the priors could be tweaked.