Hipparcos Modelling

This tutorial explains how to model Hipparcos IAD data. The first example reproduces the catalog values of position, parallax, and proper motion. The second uses Hipparcos to constrain the mass of a directly imaged planet.

Reproduce Catalog Values

This is the so-called "Nielsen" test from Nielsen et al (2020) and available in Orbitize!.

We start by using a system with a planet with zero mass to fit the straight line motion.

using Octofitter
using Distributions
using CairoMakie

hip_like = Octofitter.HipparcosIADLikelihood(;
    hip_id=21547,
    renormalize=true, # default: true
)

@planet b AbsoluteVisual{KepOrbit} begin
    mass = 0.
    e = 0.
    ω = 0.
    a = 1.
    i = 0
    Ω = 0.
    tp = 0.
end
@system c_Eri_straight_line begin
    M = 1.0 # Host mass not important for this example
    rv = 0.0 # system RV not significant for this example
    plx ~ Uniform(0,100)
    pmra ~ Uniform(-100, 100)
    pmdec ~  Uniform(-100, 100)


    # It is convenient to put a prior of the catalog value +- 10,000 mas on position
    ra_hip_offset_mas ~  Normal(0, 10000)
    dec_hip_offset_mas ~ Normal(0, 10000)
    dec = $hip_like.hip_sol.dedeg + system.ra_hip_offset_mas/60/60/1000
    ra = $hip_like.hip_sol.radeg + system.dec_hip_offset_mas/60/60/1000/cosd(system.dec)

    ref_epoch = Octofitter.hipparcos_catalog_epoch_mjd

end hip_like b

model = Octofitter.LogDensityModel(c_Eri_straight_line)
LogDensityModel for System c_Eri_straight_line of dimension 5 and 104 epochs with fields .ℓπcallback and .∇ℓπcallback

We can now sample from the model using Hamiltonian Monte Carlo. This should only take about 15 seconds.

using Pigeons
chain,pt = octofit_pigeons(model, n_rounds=6)
(chain = MCMC chain (64×21×1 Array{Float64, 3}), pt = PT(checkpoint = false, ...))

Plot the posterior values:

octoplot(model,chain,show_astrom=false,show_astrom_time=false)
Example block output

We now visualize the model fit compared to the Hipparcos catalog values:

using LinearAlgebra, StatsBase
fig = Figure(size=(1080,720))
j = i = 1
for prop in (
    (;chain=:ra, hip=:radeg, hip_err=:e_ra),
    (;chain=:dec, hip=:dedeg, hip_err=:e_de),
    (;chain=:plx, hip=:plx, hip_err=:e_plx),
    (;chain=:pmra, hip=:pm_ra, hip_err=:e_pmra),
    (;chain=:pmdec, hip=:pm_de, hip_err=:e_pmde)
)
    global i, j, ax
    ax = Axis(
        fig[j,i],
        xlabel=string(prop.chain),
    )
    i+=1
    if i > 3
        j+=1
        i = 1
    end
    unc = hip_like.hip_sol[prop.hip_err]
    if prop.chain == :ra
        unc /= 60*60*1000 * cosd(hip_like.hip_sol.dedeg)
    end
    if prop.chain == :dec
        unc /= 60*60*1000
    end
    if prop.hip == :zero
        n = Normal(0, unc)
    else
        mu = hip_like.hip_sol[prop.hip]
        n = Normal(mu, unc)
    end
    n0,n1=quantile.(n,(1e-4, 1-1e-4))
    nxs = range(n0,n1,length=200)
    h = fit(Histogram, chain[prop.chain][:], nbins=55)
    h = normalize(h, mode=:pdf)
    barplot!(ax, (h.edges[1][1:end-1] .+ h.edges[1][2:end])./2, h.weights, gap=0, color=:red, label="posterior")
    lines!(ax, nxs, pdf.(n,nxs), label="Hipparcos Catalog", color=:black, linewidth=2)
end
Legend(fig[i-1,j+1],ax,tellwidth=false)
fig
Example block output

Constrain Planet Mass

We now allow the planet to have a non zero mass and have free orbit. We start by specifying relative astrometry data on the planet, collated by Jason Wang and co. on whereistheplanet.com.

astrom_like1 = PlanetRelAstromLikelihood(
    (;epoch=57009.1, sep=454.24,  σ_sep=1.88, pa=2.98835, σ_pa=0.00401426),
    (;epoch=57052.1, sep=451.81,  σ_sep=2.06, pa=2.96723, σ_pa=0.00453786),
    (;epoch=57053.1, sep=456.8 ,  σ_sep=2.57, pa=2.97038, σ_pa=0.00523599),
    (;epoch=57054.3, sep=461.5 ,  σ_sep=23.9 ,pa=2.97404, σ_pa=0.0523599 ,),
    (;epoch=57266.4, sep=455.1 ,  σ_sep=2.23, pa=2.91994, σ_pa=0.00453786),
    (;epoch=57332.2, sep=452.88,  σ_sep=5.41, pa=2.89934, σ_pa=0.00994838),
    (;epoch=57374.2, sep=455.91,  σ_sep=6.23, pa=2.89131, σ_pa=0.00994838),
    (;epoch=57376.2, sep=455.01,  σ_sep=3.03, pa=2.89184, σ_pa=0.00750492),
    (;epoch=57415.0, sep=454.46,  σ_sep=6.03, pa=2.8962 , σ_pa=0.00890118),
    (;epoch=57649.4, sep=454.81,  σ_sep=2.02, pa=2.82394, σ_pa=0.00453786),
    (;epoch=57652.4, sep=451.43,  σ_sep=2.67, pa=2.82272, σ_pa=0.00541052),
    (;epoch=57739.1, sep=449.39,  σ_sep=2.15, pa=2.79357, σ_pa=0.00471239),
    (;epoch=58068.3, sep=447.54,  σ_sep=3.02, pa=2.70927, σ_pa=0.00680678),
    (;epoch=58442.2, sep=434.22,  σ_sep=2.01, pa=2.61171, σ_pa=0.00401426),
)
PlanetRelAstromLikelihood Table with 5 columns and 14 rows:
      epoch    sep     σ_sep  pa       σ_pa
    ┌────────────────────────────────────────────
 1  │ 57009.1  454.24  1.88   2.98835  0.00401426
 2  │ 57052.1  451.81  2.06   2.96723  0.00453786
 3  │ 57053.1  456.8   2.57   2.97038  0.00523599
 4  │ 57054.3  461.5   23.9   2.97404  0.0523599
 5  │ 57266.4  455.1   2.23   2.91994  0.00453786
 6  │ 57332.2  452.88  5.41   2.89934  0.00994838
 7  │ 57374.2  455.91  6.23   2.89131  0.00994838
 8  │ 57376.2  455.01  3.03   2.89184  0.00750492
 9  │ 57415.0  454.46  6.03   2.8962   0.00890118
 10 │ 57649.4  454.81  2.02   2.82394  0.00453786
 11 │ 57652.4  451.43  2.67   2.82272  0.00541052
 12 │ 57739.1  449.39  2.15   2.79357  0.00471239
 13 │ 58068.3  447.54  3.02   2.70927  0.00680678
 14 │ 58442.2  434.22  2.01   2.61171  0.00401426

We specify our full model:

@planet b AbsoluteVisual{KepOrbit} begin
    a ~ truncated(Normal(10,1),lower=0.1)
    e ~ Uniform(0,0.99)
    ω ~ Uniform(0, 2pi)
    i ~ Sine()
    Ω ~ Uniform(0, 2pi)
    θ ~ Uniform(0, 2pi)
    tp = θ_at_epoch_to_tperi(system,b,58442.2)
    mass = system.M_sec
end astrom_like1

@system cEri begin
    M_pri ~ truncated(Normal(1.75,0.05), lower=0.03) # Msol
    M_sec ~ LogUniform(0.1, 100) # MJup
    M = system.M_pri + system.M_sec*Octofitter.mjup2msol # Msol

    rv =  12.60e3 # m/s
    plx ~ Uniform(20,40)
    pmra ~ Uniform(-100, 100)
    pmdec ~  Uniform(-100, 100)

    # It is convenient to put a prior of the catalog value +- 1000 mas on position
    ra_hip_offset_mas ~  Normal(0, 1000)
    dec_hip_offset_mas ~ Normal(0, 1000)
    dec = $hip_like.hip_sol.dedeg + system.ra_hip_offset_mas/60/60/1000
    ra = $hip_like.hip_sol.radeg + system.dec_hip_offset_mas/60/60/1000/cos(system.dec)

    ref_epoch = Octofitter.hipparcos_catalog_epoch_mjd
end hip_like b

model = Octofitter.LogDensityModel(cEri)
LogDensityModel for System cEri of dimension 13 and 118 epochs with fields .ℓπcallback and .∇ℓπcallback

Now we sample:

using Pigeons
chain,pt = octofit_pigeons(model, n_rounds=8, explorer=SliceSampler())
chain
Chains MCMC chain (256×24×1 Array{Float64, 3}):

Iterations        = 1:1:256
Number of chains  = 1
Samples per chain = 256
Wall duration     = 370.56 seconds
Compute duration  = 370.56 seconds
parameters        = M_pri, M_sec, plx, pmra, pmdec, ra_hip_offset_mas, dec_hip_offset_mas, M, rv, dec, ra, ref_epoch, b_a, b_e, b_ω, b_i, b_Ω, b_θ, b_tp, b_mass
internals         = loglike, logpost, logprior, pigeons_logpotential

Summary Statistics
          parameters         mean        std       mcse   ess_bulk   ess_tail  ⋯
              Symbol      Float64    Float64    Float64    Float64    Float64  ⋯

               M_pri       1.7431     0.0425     0.0027   245.2475   233.2931  ⋯
               M_sec      13.9335    20.5757    11.0383     7.9777    19.7949  ⋯
                 plx      33.9150     0.3478     0.0394    79.3474   120.2118  ⋯
                pmra      44.5099     0.5665     0.2472     6.3558    32.5248  ⋯
               pmdec     -64.2797     0.3347     0.0750    42.8731    25.0665  ⋯
   ra_hip_offset_mas      -3.1659     4.6915     2.5119     8.2870    19.7949  ⋯
  dec_hip_offset_mas      -0.7763     1.2031     0.6608     3.9464    61.3337  ⋯
                   M       1.7564     0.0466     0.0041   139.9917   165.4535  ⋯
                  rv   12600.0000     0.0000        NaN        NaN        NaN  ⋯
                 dec      -2.4734     0.0000     0.0000     8.2870    19.7949  ⋯
                  ra      69.4004     0.0000     0.0000     3.9464    61.3337  ⋯
           ref_epoch   48348.5625     0.0000        NaN        NaN        NaN  ⋯
                 b_a      10.2581     0.5863     0.0429   192.3395    88.6884  ⋯
                 b_e       0.5739     0.0496     0.0034   209.2122    36.0147  ⋯
                 b_ω       2.4824     1.4708     0.1044    79.1041    17.0420  ⋯
                 b_i       2.4537     0.0841     0.0062   191.3777    69.2213  ⋯
                 b_Ω       2.1178     1.4271     0.1235    80.7599    17.0420  ⋯
          ⋮                ⋮           ⋮          ⋮          ⋮          ⋮      ⋱
                                                    2 columns and 3 rows omitted

Quantiles
          parameters         2.5%        25.0%        50.0%        75.0%       ⋯
              Symbol      Float64      Float64      Float64      Float64       ⋯

               M_pri       1.6690       1.7162       1.7413       1.7650       ⋯
               M_sec       0.1133       0.5022       2.5355      17.1418       ⋯
                 plx      33.2793      33.6607      33.9148      34.1699       ⋯
                pmra      43.6308      44.1028      44.4183      44.8327       ⋯
               pmdec     -64.8337     -64.5182     -64.3155     -64.0716     - ⋯
   ra_hip_offset_mas     -16.1554      -4.2405      -0.6110      -0.1054       ⋯
  dec_hip_offset_mas      -3.6855      -1.0786      -0.2562       0.0357       ⋯
                   M       1.6773       1.7266       1.7560       1.7842       ⋯
                  rv   12600.0000   12600.0000   12600.0000   12600.0000   126 ⋯
                 dec      -2.4734      -2.4734      -2.4734      -2.4734       ⋯
                  ra      69.4004      69.4004      69.4004      69.4004       ⋯
           ref_epoch   48348.5625   48348.5625   48348.5625   48348.5625   483 ⋯
                 b_a       9.1879       9.9394      10.3096      10.7423       ⋯
                 b_e       0.4723       0.5414       0.5748       0.6063       ⋯
                 b_ω       0.9982       1.1759       1.8473       4.2157       ⋯
                 b_i       2.3273       2.3914       2.4366       2.5032       ⋯
                 b_Ω       0.3574       0.7664       1.9184       3.5090       ⋯
          ⋮                ⋮            ⋮            ⋮            ⋮            ⋱
                                                     1 column and 3 rows omitted
octoplot(model, chain, show_mass=true)
Example block output

We see that we constrained both the orbit and the parallax. The mass is not strongly constrained by Hipparcos.